At this year's Wireless Infrastructure Show, Qualcomm EVP Peggy Johnson mentioned a small-cell deployment trial done with Sprint and NASCAR. The audience wanted more details and Qualcomm was kind enough to send us this blog post, so I am posting it here -- Tracy Ford, director, HetNet Forum at PCIA--The Wireless Infrastructure Association.

Stress-testing “Hyper-dense” small cells with Sprint and NASCAR

During this year’s NASCAR Sprint Cup Series race in March, we at Qualcomm Technologies (QTI) joined millions of NASCAR fans in experiencing the adrenaline rush and the celebratory euphoria. As fascinating as a NASCAR event is, our focus was elsewhere, just off the track, on the garage area of Phoenix International Raceway in Arizona, the venue for the race as well as our joint trial with Sprint and NASCAR. The trial stress-tested and validated the “hyper-dense small cells” concept and QTI’s UltraSONTM suite of features. When the results were in, we were as ecstatic—perhaps more so than the fans of the winning car and driver. As clearly understood in the wireless industry, dense deployment of small cells everywhere—indoors and outdoors, at residences, in enterprises, shopping malls etc., is needed to address the traffic growth (aka 1000x challenge). Such hyper-dense deployments are only possible with an unplanned, ad-hoc approach, without any detailed RF planning. Obviously, this approach has inherent challenges such as interference, reliable mobility etc. Qualcomm Technologies’ UltraSON solves many of these challenges. For example, its mobility management feature reduces “ping-pong” between cells and increases reliability. Its interference management techniques add robustness to the system and thereby enable the capacity to scale with densification. And there are many such features that are beyond what the standards recommend. We have been testing UltraSON in our labs and on our over-the-air system and wanted to prove its worth in a real-life situation. But what we got at PIR was one of the harshest RF environments possible—large trucks acting as reflectors and obstacles, and constantly moving vehicles and people made it very dynamic. Not to be deterred, we deployed what may be the densest small cell network in the world, with an equivalent density of 1000 cells/km2, built with Airspan’s LTE-Advanced picos, powered by Qualcomm Technologies’ small cell chipsets and UltraSON. Additionally, the network had to be deployed in a very short time (1-2 days), which meant no prior planning, and thus allowing us to demonstrate how UltraSON adapts to unplanned deployments. Our extensive experience testing UltraSON gave us a lot of confidence, and going into the event we felt more than ready for the challenge. We felt like a knowledgeable fan betting on a reliable team, and our confidence was bolstered when UltraSON solved the challenges and kept system performance very high throughout the event. The capacity carried by the network represented an increase of more than 40-times compared to the other alternative (cell-on-wheels) for the same amount of spectrum, offering a stunning 654 bps/Hz/km2 area spectral efficiency. More importantly, UltraSON reduced handovers by more than 50%, significantly minimizing radio link failures and thereby providing an excellent user experience across many commercial applications. So, the trial proved many things. Above all, it showed that “hyper-dense small cells” is not just a vision, but indeed real, and UltraSON plays a large part in making it so. As the saying goes, if it can work there (harshest conditions at PIR), it can work anywhere. If you would like to learn more, please visit